machine learning

Data Science

Intégrer au plus tôt la sécurité dans les delivery de Machine Learning

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin. Introduction Élément clef en logiciel, la sécurité doit bien entendu être considérée…

Lire la suite
Data

Matrice Cynefin x Machine Learning – Aller vite en production pour minimiser le risque des systèmes complexes

Certains affirment qu’il faut attendre d’avoir finalisé son modèle de Machine Learning (ML) avant d’aller en production, d'autres qu’il faut aller au plus tôt en production pour avoir du feedback. Formé à l'école Agile, DevOps, Lean, Accelerate, je fais clairement plus partie de la deuxième catégorie ; cependant je dois reconnaître que certains problèmes méritent d’être résolus complètement avant d’aller en production. Ayant découvert récemment la matrice Cynefin, dans ce court billet je propose une grille de lecture des problèmes de ML que nous pouvons…

Lire la suite
Bonne pratique

Apprendre la normalité ou détecter l’anormalité ?  – Compte-rendu du talk de Reynald Rivière à La Duck Conf 2022

Reynald est Senior Manager en Data Science chez OCTO et intervient sur des missions de création de services et produits basés sur l’IA et la data. Ayant travaillé sur la Data Science dans plusieurs secteurs d'activité, il nous présente aujourd’hui l’IA appliquée au domaine de la cybersécurité, en tentant de répondre à la question : Apprendre la normalité ou détecter l’anormalité avec l’IA ? 1. Un peu d'humilité pour démarrer cette session “Tous nos modèles sont faux… mais certains utiles” Georges Box, statisticien du siècle…

Lire la suite
Data

Et si les métriques de monitoring de ML devenaient fonctionnalités ?

Les équipes développant des applications de Data Science investissent beaucoup d’énergie pour identifier et implémenter des métriques de monitoring pertinentes. Nous pensons qu’il est possible de capitaliser sur ce travail en proposant des fonctionnalités supplémentaires à nos utilisateurs afin de renforcer l’impact de nos applications. Le monitoring s’appuie notamment sur le calcul de métriques à des fins de supervisions; c'est-à-dire mesurer l’état de service et détecter des problèmes. Les métriques calculées peuvent être plus ou moins haut niveau, plus ou moins éloignées du matériel: Bas…

Lire la suite
Data Science

Nettoyage du texte en NLP : moins de vocabulaire, moins de bruit

Cet article est le deuxième de la série Analyse de tendances des réseaux sociaux. Dans l'article précédent, nous avons présenté les bases méthodologiques pour analyser des tendances à partir de données de réseaux sociaux. Nous avons notamment expliqué l’importance de bien identifier la population de référence sur laquelle porte notre étude, et de bien choisir la fonction d’extrapolation pour que nos observations soient réellement représentatives. À présent, il est temps de commencer à collecter des tweets et de se lancer dans la détection de tendances…

Lire la suite
Data Science

Comment structurer vos équipes et démocratiser l’Intelligence Artificielle au sein de votre organisation

Introduction des auteurs et de l’initiative Dans le cadre des réflexions d’OCTO Technology sur les grands enjeux du monde de la data, Jean-Baptiste Larraufie consultant OCTO et Ming-Li Gridel Directrice Data science chez DataRobot ont amorcé une discussion sur l’évolution des structures data dans les entreprises.  En tant que conseiller stratégique sur les initiatives data de grands groupes français, OCTO Technology a contribué à diverses et nombreuses missions d'Intelligence Artificielle (IA) et assisté à la structuration d’équipes Data chez nombre d’entreprises de l’hexagone. DataRobot, partenaire d’OCTO,…

Lire la suite
Accelerate

L’expérimentation dans un Delivery de Machine Learning

La méthode du Lean Product Management dont s'inspire fortement Accelerate dans sa vision du Delivery vise à construire le bon produit, au bon moment. Cette philosophie cherche surtout à permettre aux organisations de s'adapter aux changements continus auxquels est confronté un produit tout au long de son cycle de vie. L'expérimentation fait partie des pratiques de cette méthode et appartient au groupe de capabilities Product and processes du modèle Accelerate. Et même si cette capability rime souvent avec risques et/ou perte de temps, elle est…

Lire la suite
Archi & techno

Modèle embarqué VS model as a service : quelle stratégie choisir ?

    Introduction Vous avez développé un super modèle de Machine Learning, les performances sont au top et il résout un vrai problème. Malheureusement, personne n’en aura jamais connaissance si vous ne le déployez pas en production. Votre modèle n’aura été qu’un POC parmi tant d’autres et ne créera jamais de valeur pour l’entreprise et pour vos utilisateurs. Il y a quelques années, alors que les modèles n’étaient que très rarement déployés en production, la question de l’exposition était souvent anecdotique. Avec la croissance grandissante…

Lire la suite
Archi & techno

La donnée synthétique 3D : Construire plus rapidement un dataset d’un modèle de ML performant

Obtenir un jeu de données pour l'entraînement de son modèle de machine learning dans un cas d'usage donné reste encore aujourd'hui très difficile. Beaucoup sont issus de travaux réalisés et mis à jour par des communautés (universitaires, centre de recherches, instituts spécialisés…) impliquant un coût non négligeable de collecte des données.

Lire la suite