Deep Learning

Archi & techno

La donnée synthétique 3D : Construire plus rapidement un dataset d’un modèle de ML performant

Obtenir un jeu de données pour l'entraînement de son modèle de machine learning dans un cas d'usage donné reste encore aujourd'hui très difficile. Beaucoup sont issus de travaux réalisés et mis à jour par des communautés (universitaires, centre de recherches, instituts spécialisés…) impliquant un coût non négligeable de collecte des données.

Lire la suite
Data Science

Green AI – les algorithmes en question

Les auteurs tiennent à remercier chaleureusement Benjamin Scellier, coauteur avec Yoshua Bengio de Equilibrium Propagation pour son temps, sa disponibilité et sa relecture attentive et bienveillante. Si on parle de sauvegarde de notre planète à un Data Scientist, il est probable qu’il s’imagine tout de suite utiliser son savoir pour développer des algorithmes capables d’optimiser l’utilisation de nos ressources ou bien de régler une bonne fois pour toute le problème du réchauffement climatique en le prenant pour ce qu’il est, un problème scientifique qu’il faut…

Lire la suite
Data Science

Comment l’IA peut-elle changer le recrutement ? (partie 3)

Dans la deuxième partie de l’article, nous avons vu une façon d’employer l'IA qui a le potentiel d’apporter la flexibilité nécessaire à une détection intelligente de mots-clés.  Dans cette troisième partie, nous allons vous présenter notre implémentation d’une solution de tri par mots-clés grâce à l’IA, ce que nous avons appris, les pistes que nous avons explorées et les challenges que nous avons rencontrés.

Lire la suite
Data Science

Comment l’IA peut-elle changer le recrutement ? (partie 2)

Dans la première partie de l’article, nous avons vu quelles étaient les solutions logicielles permettant aux entreprises de trier les candidatures. Cette démarche, qui a de l’intérêt principalement lorsque l’entreprise reçoit énormément de candidatures, repose sur une méthode simple mais très limitée. Nous avons vu que l’IA a le potentiel pour apporter des solutions aux limites évoquées mais présente aussi des écueils à éviter, notamment les biais. Dans cette deuxième partie, nous allons présenter une technique de NLP qui pourrait permettre de pallier les défauts…

Lire la suite
Bonne pratique

Amener son projet de machine learning jusqu’en production avec Wheel et Docker

Cet article propose d'explorer setuptools, Wheel et Docker afin de packager une application de Machine Learning pour détecter des muffins 🍪 ou des chihuhuas 🐶 dans une image, avec code a l'appui. Si packager du code de Machine Learning en Python est pour vous synonyme de demander à vos utilisateurs de cloner votre repository git sur leur machine, cet article devrait vous intéresser.

Lire la suite
Bonne pratique

Plongez dans le grand jeu de données (ou comment constituer et gérer son dataset)

Un premier briefing Avant de commencer le grand plongeon, des définitions s’imposent : Jeu de données (ou dataset) : collection de données de même type, de préférence de même format et souvent accompagnées d'annotation Annotation : description du contenu de chacune des données d’un dataset. L’annotation des données est le processus d’étiquetage du contenu reconnaissable par un ordinateur. En fonction de la nature du problème, on indiquera le type de l’objet dans l’image, on peut également indiquer ses coordonnées ou d’autres attributs. Modèle de Machine…

Lire la suite
Data Science

Réseau de neurones convolutif semi-supervisé pour de la prédiction

“Je dispose de données annotées en nombre limité, néanmoins obtenir des données non annotées est pour moi une chose aisée. Existe-t-il des méthodes de Machine Learning permettant d’utiliser des données annotées et non annotées en même temps ?”A travers cet article, en nous basant sur un cas d’usage assez simple, nous allons aborder cette thématique et y apporter quelques éléments de réponse. L'apprentissage supervisé et l’apprentissage non supervisé Les algorithmes d’apprentissage automatique ont généralement besoin de beaucoup de données pour être efficaces, ce n’est pas…

Lire la suite
Data

L’IA embarquée : entraîner, déployer et utiliser du Deep Learning sur un Raspberry (Partie 3)

Dans cette série d’article, on se propose d’étudier le cas d’usage de reconnaissance de dessins grâce à un raspberry. L’idée est d’utiliser la caméra d’un raspberry pour capturer une image représentant un dessin, et déterminer grâce à un réseau de neurones s’il s’agit d’une voiture ou non. Dans un premier article, on a entraîné un réseau de neurones performant à l’aide du framework Keras. Le second article porte sur le déploiement maîtrisé du modèle dans un environnement de production. Il ne nous reste plus qu’à…

Lire la suite
Data

L’IA embarquée : entraîner, déployer et utiliser du Deep Learning sur un Raspberry (Partie 1)

Pour la deuxième année consécutive, OCTO Technology prend part à la course Iron Car avec son équipage Octonomous. Pour rappel, le but de la compétition est de réaliser trois tours de circuit avec une voiture de taille réduite le plus rapidement possible. Bien entendu, la voiture n’est pas radiocommandée ; une des règles de la compétition est précisément d’utiliser un réseau de neurones pour le pilotage de la voiture ! Le matériel autorisé, outre la voiture, est composé d’un Raspberry Pi et de sa caméra…

Lire la suite
Archi & techno

Industrial document classification with Deep Learning

Knowledge is a goldmine for companies. It comes in different shapes and forms: mainly documents (presentation slides and documentation) that allow businesses to share information with their customers and staff. The way companies harness this knowledge is central to their ability to develop their business successfully. One of the common ways to ease the access to this document base is to use search engines based on textual data. At OCTO, we have decided to use optical character recognition (OCR) solutions to extract this data, since…

Lire la suite