Data Science

Posté le 26/08/2021 par Touraya El Hassani

Nous, les humains, avons un système visuel rapide et précis, ce qui nous permet d'effectuer des tâches complexes comme la conduite avec peu de réflexion consciente. En effet, nous savons inconsciemment quels sont les objets que nous voyons, où ils se trouvent et comment ils interagissent.Au cours des dernières années, des algorithmes rapides et pré...

Lire la suite >

Posté le 26/07/2021 par Valentin DESVAUX DE MARIGNY

Le Cloud Computing a déjà fait ses preuves dans le traitement de grands volumes de données. Cependant dans un contexte IoT, la centralisation dans le Cloud de toutes les données capturées par les objets connectés se heurte au problème du coût de stockage, du coût de transport réseau et de la latence.C’est là qu’intervient le Edge computing, un ense...

Lire la suite >

Posté le 22/07/2021 par Simon GRAH

Il existe plusieurs techniques pour optimiser un job Spark pour améliorer les performances et la scalabilité.

Lire la suite >

Posté le 06/07/2021 par Emmanuel Lin Toulemonde

« […] successful teams had adequate test data to run their fully automated test suites and could acquire test data for running automated tests on demand.In addition, test data was not a limit on the automated tests they could run. »Extrait de: Forsgren PhD. « Accelerate. »Cet article fait partie de la série “Accélérer le Delivery de projets de Mach...

Lire la suite >

Posté le 20/05/2021 par Tanguy Morelle

Le premier article était consacré à la structure et au fonctionnement des algorithmes évolutionnistes et le second portait sur leur performance.Nous allons ici nous intéresser à un cas d'application concret d'algorithmes évolutionnistes sur un problème de données complexes. Le cas d'application présenté est l'utilisation d'un algorithme évolutionni...

Lire la suite >

Posté le 12/05/2021 par Antoine BRES

Dans la première partie de l’article, nous avons vu quelles étaient les solutions logicielles permettant aux entreprises de trier les candidatures. Cette démarche, qui a de l’intérêt principalement lorsque l’entreprise reçoit énormément de candidatures, repose sur une méthode simple mais très limitée. Nous avons vu que l’IA a le potentiel pour appo...

Lire la suite >

Posté le 11/05/2021 par Sofia Calcagno

Cet article fait partie de la série Accélérer le Delivery de projets de Machine Learning, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article intr...

Lire la suite >

Posté le 28/04/2021 par Samy Ait Bachir

La gestion de versions en delivery de ML, un processus qui permet de les mettre à disposition pour une utilisation en production.

Lire la suite >

Posté le 08/04/2021 par Antoine BRES

Savez-vous qu’il faut évaluer en moyenne 100 candidatures pour réaliser une embauche ? C’est le résultat d’une étude menée par Lever, une société de San Francisco, basée sur les données récoltées de ses clients installés dans 40 pays.Pour gérer toutes ces candidatures, les recruteurs utilisent des outils appelés Applicant Tracking System (ATS). Ils...

Lire la suite >

Posté le 07/04/2021 par Ismaïl LACHHEB

Le feature store, l'outil révolutionnaire pour data science. Voyons ensemble son histoire et comment l'utiliser.

Lire la suite >