Data Science

Data Science

Comment l’IA peut-elle changer le recrutement ? (partie 1)

Savez-vous qu’il faut évaluer en moyenne 100 candidatures pour réaliser une embauche ? C’est le résultat d’une étude menée par Lever, une société de San Francisco, basée sur les données récoltées de ses clients installés dans 40 pays. Pour gérer toutes ces candidatures, les recruteurs utilisent des outils appelés Applicant Tracking System (ATS). Ils permettent d'organiser et centraliser les candidatures provenant de différents canaux (sourcing de candidats, cooptations, jobboards, site carrière, etc.) et de suivre l'avancement du processus de sélection. Mais les recruteurs ont toujours…

Lire la suite
Data Science

Le Feature Store, nouvel outil pour les projets data science

I) Quelles sont leurs origines, à quoi servent-ils et à qui sont-ils destinés ?  Une feature est une mesure d’une propriété d’une observation, plus prosaïquement, elle peut être l’âge d’un individu ou un mot extrait d’un texte. Les features, c’est l’or raffiné par les data scientists pour produire les modèles de machine learning. Fréquemment, les problèmes qui surviennent dans un projet data science sont liés à ces features : à leur qualité ou à leur disponibilité notamment. Un feature store est un point centralisé où…

Lire la suite
Data Science

Les tests automatisés en Delivery de Machine Learning

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning” traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Un Data Scientist heureux d’avoir des tests automatisés qui ont détecté un problème avant qu’il ne devienne critique Introduction Parmi les leviers garantissant la qualité d’un produit logiciel, on trouve les tests automatisés. Ces tests, lorsqu’ils sont rédigés de manière effective, doivent permettre de détecter des problèmes dans la base de code et empêcher le déploiement d’un…

Lire la suite
Data Science

CovidTracker : la data au service de tous – Compte-rendu du talk de Guillaume Rozier à La Duck Conf 2021

Une fois de plus cette année, la Duck Conf vous livre un tour d’horizon des pratiques d’architecture de SI, fondé sur des expériences terrains et nos convictions. Pour cette keynote de clôture, nous avons le plaisir d’accueillir Guillaume Rozier, fondateur de CovidTracker. Vous découvrirez dans ce compte-rendu les coulisses de ce service, ses facteurs-clés de succès et les orientations prévues dans un futur proche. Les diapositives de la présentation de Guillaume sont accessibles via ce lien. 1. What : d’une initiative individuelle à un projet…

Lire la suite
Data Science

Amener son projet de machine learning jusqu’en production avec Wheel et Docker

Cet article propose d'explorer setuptools, Wheel et Docker afin de packager une application de Machine Learning pour détecter des muffins 🍪 ou des chihuhuas 🐶 dans une image, avec code a l'appui. Si packager du code de Machine Learning en Python est pour vous synonyme de demander à vos utilisateurs de cloner votre repository git sur leur machine, cet article devrait vous intéresser.

Lire la suite
Data Science

La gestion visuelle dans un projet de Machine Learning Delivery

Introduction En développement logiciel et en Machine Learning, le travail en cours n’est pas aussi visible que dans une usine où l'on voit les pièces s'assembler et progresser d'une étape à l'autre. Ne pas voir le travail en cours peut nous empêcher de voir certains des points bloquants, de se projeter sur la quantité de travail bientôt terminé, d’améliorer le process, … Pour remédier à cela, il est donc important d’outiller l’équipe pour rendre le travail visible tant au niveau des membres de l'équipe elle-même…

Lire la suite
Data Science

Westrum Organizational Culture et Machine Learning – Partie 2 : Changer la culture

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec le framework Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin.  Cet article aborde la capacité "Westrum Organizational Culture"…

Lire la suite
Data Science

Westrum Organizational Culture et Machine Learning – Partie 1 : Impacts de la culture sur le delivery

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec le framework Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin.  Cet article aborde la capacité "Westrum Organizational Culture"…

Lire la suite
Data Science

Plongez dans le grand jeu de données (ou comment constituer et gérer son dataset)

Un premier briefing Avant de commencer le grand plongeon, des définitions s’imposent : Jeu de données (ou dataset) : collection de données de même type, de préférence de même format et souvent accompagnées d'annotation Annotation : description du contenu de chacune des données d’un dataset. L’annotation des données est le processus d’étiquetage du contenu reconnaissable par un ordinateur. En fonction de la nature du problème, on indiquera le type de l’objet dans l’image, on peut également indiquer ses coordonnées ou d’autres attributs. Modèle de Machine…

Lire la suite
Data Science

Accélérer le Delivery de projets de Machine Learning

Cet article sert d'introduction à une série plus large, traitant de l'application du framework Accelerate dans un contexte incluant du Machine Learning Avant de commencer, voici quelques définitions et conventions de nommage que nous adopterons tout au long de la série d'articles : Machine Learning : “Le Machine Learning est une fonctionnalité qui permet à des logiciels d'effectuer une tâche sans programmation ni règles explicites”. (Source google). Machine Learning est souvent abrégé ML. Delivery : le processus permettant de mettre un produit entre les mains…

Lire la suite