Machine Learning

Machine Learning

Green AI – les algorithmes en question

Les auteurs tiennent à remercier chaleureusement Benjamin Scellier, coauteur avec Yoshua Bengio de Equilibrium Propagation pour son temps, sa disponibilité et sa relecture attentive et bienveillante. Si on parle de sauvegarde de notre planète à un Data Scientist, il est probable qu’il s’imagine tout de suite utiliser son savoir pour développer des algorithmes capables d’optimiser l’utilisation de nos ressources ou bien de régler une bonne fois pour toute le problème du réchauffement climatique en le prenant pour ce qu’il est, un problème scientifique qu’il faut…

Lire la suite
Machine Learning

Comment l’IA peut-elle changer le recrutement ? (partie 3)

Dans la deuxième partie de l’article, nous avons vu une façon d’employer l'IA qui a le potentiel d’apporter la flexibilité nécessaire à une détection intelligente de mots-clés.  Dans cette troisième partie, nous allons vous présenter notre implémentation d’une solution de tri par mots-clés grâce à l’IA, ce que nous avons appris, les pistes que nous avons explorées et les challenges que nous avons rencontrés.

Lire la suite
Machine Learning

L’atelier matrice d’erreur : démystifier les performances du ML avec ses utilisateurs

Où placer le curseur : plus de faux négatifs ou plus de faux positifs ?

Nous pensons que la gestion des erreurs est un aspect important dans les systèmes de prise de décision et qu’il est indispensable d’étudier cela avec les utilisateurs d’un tel produit, a fortiori lorsqu’il embarque du Machine Learning. Dans cet article, nous vous proposons une méthode itérative, pour évaluer le coût d’une erreur et adapter le système de prise de décision, pour que ses utilisateurs aient plus confiance en lui. La data science proposant de nombreuses définitions que nous utiliserons dans cet article, voici un petit…

Lire la suite
Machine Learning

Automatiser les déploiements de projets de Machine Learning. Partie 1 : la construction de modèles

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Il peut être lu indépendamment, mais si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, vous pouvez lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin. Dans Accelerate, l’automatisation des déploiements fait référence à l’aptitude à…

Lire la suite
Machine Learning

Kubeflow: le ML industrialisé et à l’échelle dans Kubernetes

Pour les entreprises exploitant l’Intelligence Artificielle, bien maîtriser son intégration dans les écosystèmes de données reste un enjeu majeur. Parmi les défis à relever pour mettre en place l’IA de manière pérenne, l’industrialisation a su tirer son épingle du jeu pour devenir un élément indispensable d’une bonne intégration de l’IA en production. Dans cet article, nous vous proposons de vous tourner vers l’après industrialisation : le passage à l’échelle ! Cet article fait suite à plusieurs mois d’expérimentation de la solution Kubeflow permettant de déployer…

Lire la suite
Machine Learning

You Only Look Once – un réseau de neurones pour la détection d’objets

Nous, les humains, avons un système visuel rapide et précis, ce qui nous permet d'effectuer des tâches complexes comme la conduite avec peu de réflexion consciente. En effet, nous savons inconsciemment quels sont les objets que nous voyons, où ils se trouvent et comment ils interagissent. Au cours des dernières années, des algorithmes rapides et précis se sont mis en place pour la reconnaissance d'objets dans une image. Plus de détails sur ces différents algorithmes dans la page wikipédia : https://fr.wikipedia.org/wiki/Reconnaissance_de_formes. La reconnaissance d'objets est…

Lire la suite
Machine Learning

Pourquoi et quand découpler ses architectures de projets de Machine Learning pour en accélérer le delivery

Couverture livre accelerate

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application d’Accelerate [1] dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin. Accelerate présente la capability "Loosely Coupled Architecture" comme un mode d'organisation…

Lire la suite
Machine Learning

Algorithmes Évolutionnistes : Applications à des problèmes de données – 3

Le premier article était consacré à la structure et au fonctionnement des algorithmes évolutionnistes et le second portait sur leur performance. Nous allons ici nous intéresser à un cas d'application concret d'algorithmes évolutionnistes sur un problème de données complexes. Le cas d'application présenté est l'utilisation d'un algorithme évolutionniste comme une alternative à de l'apprentissage par renforcement pour entraîner un véhicule à se déplacer dans un environnement simulant un circuit. Le problème s'apparente ici à celui de la conduite autonome. Un peu de contexte sur l'apprentissage…

Lire la suite
Machine Learning

Comment travailler efficacement par petits incréments dans un delivery de Machine Learning ?

Cet article fait partie de la série Accélérer le Delivery de projets de Machine Learning, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin.  Certains termes techniques sont numérotés. Vous trouverez leur définition à la fin…

Lire la suite
Machine Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 2/2

Dans un article précédent, nous avons expliqué notre approche pour appliquer l’apprentissage par renforcement (RL - Reinforcement Learning) à la conduite autonome dans un simulateur. Nous avons explicité les concepts du RL dans ce cas d’usage et décrit l’algorithme de DDQN (Double Deep-Q Learning) que nous avons choisi pour ce problème. Si vous n’avez pas lu l’article précédent, retenez simplement que : On entraîne un agent dans un simulateur de conduite (ou environnement). Cet agent évolue dans la simulation et y entreprend des actions :…

Lire la suite