Machine Learning

Machine Learning

Deep Learning à l’échelle : mieux annoter pour mieux scaler

Après quelques mois d’exploration et autres proofs of concept, notre restitution devant le sponsor fait un carton ! On a fait un PoC d’une architecture de réseaux de neurones à l’état de l’art pour détecter des défauts de fabrication sur des objets à partir d'images. Pour y arriver, on a conçu une application Python pour servir ce modèle de deep learning, et on a déployé le tout sur un serveur de démonstration, branché à un écran de restitution et une caméra, au 2e étage de…

Lire la suite
Machine Learning

Lean for Machine Learning (ML)

La mise en production d’algorithmes d’apprentissage est un chantier dont il faut savoir anticiper l’ampleur. Notre expérience nous a montré que la brique algorithmique n’est qu’une petite partie d’un système complexe : c’est pour cela que nous travaillons à son intégration dans le SI au plus vite afin de lever les inconnues dues à ses spécificités. Dans cet article, nous vous proposons une démarche conduite conjointement avec le métier, dans le but premier d’apporter de la valeur à l’utilisateur final.  Pour illustrer notre démarche de…

Lire la suite
Machine Learning

Retour d’expérience : refactoring d’un modèle de Machine Learning qui tourne en Production

L'industrialisation de l'IA s'impose aujourd'hui comme l'un des enjeux majeurs pour les entreprises qui souhaitent l'intégrer dans leurs écosystèmes : en effet, seulement 13% des projets IA make it to production ! Et qui dit industrialisation dit mise en production !  Pourtant, à une époque pas si lointaine, parler d'algorithme de ML était souvent synonyme d'obscures explorations de data scientists et d'artefacts incompréhensibles à ne surtout pas toucher une fois livrés en production. Heureusement, les choses ont changé et des pratiques pour mettre en production…

Lire la suite
Machine Learning

Benchmark des plateformes NLU

octogone

Aujourd’hui, de plus en plus de sociétés et de marques décident de s’équiper de chatbots, aussi bien à destination de leurs clients qu’à destination de leurs collaborateurs. Cependant, tous les chatbots ne se valent pas : certains obtiennent de meilleurs résultats que d’autres. La question alors soulevée est : pourquoi est-ce que certains chatbots comprennent, mieux que d’autres, les actions que nous essayons d’effectuer ? La création d'un chatbot nécessite l'utilisation d'une plateforme composée d'une interface de chat, d'un NLU, d'arbres de dialogue, d'interfaces d'administration, de…

Lire la suite
Machine Learning

Introduction à l’interprétation de modèles de Machine Learning

 Introduction L’une des premières choses que l’on apprend en Machine Learning est qu’il faut souvent faire un compromis entre la performance d’un modèle et son interprétabilité. Les modèles transparents (interprétables by design, ou directement interprétables par un humain, comme la régression linéaire ou les arbres de décision) sont en général moins performants que les modèles boîte noire, c.à.d qui ne sont pas directement interprétables par l’humain, comme XGBoost ou les réseaux de neurones artificiels. Cet article propose une introduction à des méthodes d’interprétation de modèles…

Lire la suite
Machine Learning

NLP : une classification multilabels simple, efficace et interprétable

Le Machine Learning nous permet aujourd’hui de classifier facilement du texte ; or, le texte appartient parfois à plusieurs catégories, d’où le nom de classification multilabels pour parler de cette tâche. Nous allons voir dans cet article comment traiter ce problème, évaluer la performance de nos algorithmes et les interpréter. Avant toute chose, le code est disponible sur Github. Il contient deux web-apps : une permettant d’entraîner un modèle sur son propre dataset et une permettant d’afficher les prédictions et de les interpréter. A noter…

Lire la suite
Machine Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 1/2

Afin d’explorer de nouvelles possibilités concernant la conduite autonome, de nombreuses compétitions de mini-voitures autonomes existent telles que la compétition de l’Iron Car ou encore la compétition Donkey ® Car  aux États-Unis. Lors de ces compétitions, des mini voitures (type voitures radiocommandées) doivent parcourir quelques tours d’un circuit faisant approximativement la taille d’un hangar. Dans cet article, nous allons étudier l’utilisation d’une solution d’apprentissage par renforcement (RL - Reinforcement Learning - pour les intimes) pour la conduite autonome selon le contexte schématisé en figure 1.

Lire la suite
Machine Learning

Données déséquilibrées, que faire ?

Dans un problème de classification, il arrive souvent d’avoir des datasets très déséquilibrés. On parle d’un dataset déséquilibré lorsque le ratio des observations d’une classe par rapport à l’ensemble des observations est très faible. Cette notion de déséquilibre de classes est relativement fréquente dans plusieurs secteurs comme le secteur médical ou le secteur bancaire et elle est problématique lorsqu’elle n’est pas traitée. En adoptant une approche naïve de classification, autrement une approche qui ne prend pas en compte ce déséquilibre des classes, on risque fortement…

Lire la suite
Machine Learning

Marier machine learning et physique : le point de vue d’un data scientist

Cet article s'adresse à mes collègues data scientists. Il s'appuie en grande partie sur un article de 2017 intitulé “Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data” [TGDS]. [TGDS] discute des apports de la data science auprès des chercheurs scientifiques. Notre propos, dans cet article, est de résumer [TGDS] à la lumière de nos pratiques usuelles de data science, et de faire l'exercice inverse : comment ces pratiques peuvent-elles s'inscrire dans l'effort scientifique ? Comment présenter notre démarche à des scientifiques désireux…

Lire la suite
Machine Learning

SPARK + AI Summit Europe 2019

Introduction   Les 16 & 17 Octobre 2019, nous sommes rendus à Amsterdam afin d’assister à la conférence annuelle organisée par Databricks, le Spark+AI Summit, événement devenu incontournable dans le monde du Big data et de l’IA. Cette année, ce sont plus de 2300 personnes qui ont fait le déplacement pour assister à de nombreuses présentations réparties sur 11 tracks en parallèle. Autant dire que les sujets étaient très denses et nous allons tenter de vous partager l’essentiel de ce qui a retenu notre attention.…

Lire la suite