Machine Learning

Machine Learning

Algorithmes Évolutionnistes : Applications à des problèmes de données – 3

Le premier article était consacré à la structure et au fonctionnement des algorithmes évolutionnistes et le second portait sur leur performance. Nous allons ici nous intéresser à un cas d'application concret d'algorithmes évolutionnistes sur un problème de données complexes. Le cas d'application présenté est l'utilisation d'un algorithme évolutionniste comme une alternative à de l'apprentissage par renforcement pour entraîner un véhicule à se déplacer dans un environnement simulant un circuit. Le problème s'apparente ici à celui de la conduite autonome. Un peu de contexte sur l'apprentissage…

Lire la suite
Machine Learning

Comment travailler efficacement par petits incréments dans un delivery de Machine Learning ?

Cet article fait partie de la série Accélérer le Delivery de projets de Machine Learning, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin.  Certains termes techniques sont numérotés. Vous trouverez leur définition à la fin…

Lire la suite
Machine Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 2/2

Dans un article précédent, nous avons expliqué notre approche pour appliquer l’apprentissage par renforcement (RL - Reinforcement Learning) à la conduite autonome dans un simulateur. Nous avons explicité les concepts du RL dans ce cas d’usage et décrit l’algorithme de DDQN (Double Deep-Q Learning) que nous avons choisi pour ce problème. Si vous n’avez pas lu l’article précédent, retenez simplement que : On entraîne un agent dans un simulateur de conduite (ou environnement). Cet agent évolue dans la simulation et y entreprend des actions :…

Lire la suite
Machine Learning

La gestion de versions en Delivery de Machine Learning

Cet article fait partie de la suite “Accélérer le Delivery de projets de Machine Learning” traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Lorsque l’on a des problèmes en production, sans machine à remonter dans le temps, notre seul espoir est d’avoir d’anciennes versions Introduction L’une des quatre métriques de performance que propose Accelerate est le temps moyen de correction d’un incident en production (Mean Time to Repair), il s’agit d’une métrique dont le suivi permet d’avoir une idée sur…

Lire la suite
Machine Learning

Les tests automatisés en Delivery de Machine Learning

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning” traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Un Data Scientist heureux d’avoir des tests automatisés qui ont détecté un problème avant qu’il ne devienne critique Introduction Parmi les leviers garantissant la qualité d’un produit logiciel, on trouve les tests automatisés. Ces tests, lorsqu’ils sont rédigés de manière effective, doivent permettre de détecter des problèmes dans la base de code et empêcher le déploiement d’un…

Lire la suite
Machine Learning

Amener son projet de machine learning jusqu’en production avec Wheel et Docker

Cet article propose d'explorer setuptools, Wheel et Docker afin de packager une application de Machine Learning pour détecter des muffins 🍪 ou des chihuhuas 🐶 dans une image, avec code a l'appui. Si packager du code de Machine Learning en Python est pour vous synonyme de demander à vos utilisateurs de cloner votre repository git sur leur machine, cet article devrait vous intéresser.

Lire la suite
Machine Learning

Plongez dans le grand jeu de données (ou comment constituer et gérer son dataset)

Un premier briefing Avant de commencer le grand plongeon, des définitions s’imposent : Jeu de données (ou dataset) : collection de données de même type, de préférence de même format et souvent accompagnées d'annotation Annotation : description du contenu de chacune des données d’un dataset. L’annotation des données est le processus d’étiquetage du contenu reconnaissable par un ordinateur. En fonction de la nature du problème, on indiquera le type de l’objet dans l’image, on peut également indiquer ses coordonnées ou d’autres attributs. Modèle de Machine…

Lire la suite
Machine Learning

Accélérer le Delivery de projets de Machine Learning

Cet article sert d'introduction à une série plus large, traitant de l'application du framework Accelerate dans un contexte incluant du Machine Learning Avant de commencer, voici quelques définitions et conventions de nommage que nous adopterons tout au long de la série d'articles : Machine Learning : “Le Machine Learning est une fonctionnalité qui permet à des logiciels d'effectuer une tâche sans programmation ni règles explicites”. (Source google). Machine Learning est souvent abrégé ML. Delivery : le processus permettant de mettre un produit entre les mains…

Lire la suite
Machine Learning

SAP Analytics Cloud – épisode 2 : booster SAC avec Python

Cet article est le deuxième article de la série Booster SAP Analytics Cloud. Il fait suite au premier article sur la partie Visualisation innovantes D3JS. 1. Contexte et périmètre : Dans le cadre du Hackathon SAP Analytics Cloud (SAC) du 30 avril au 7 mai 2020, la tribu LIQSA (Liquid SAP Analytics) a réalisé un tableau de bord incorporant : un algorithme de Machine Learning en Python, des visualisations innovantes grâce à des librairies D3JS. Sachant que cet article fait référence à un PoC réalisé…

Lire la suite
Machine Learning

Réseau de neurones convolutif semi-supervisé pour de la prédiction

“Je dispose de données annotées en nombre limité, néanmoins obtenir des données non annotées est pour moi une chose aisée. Existe-t-il des méthodes de Machine Learning permettant d’utiliser des données annotées et non annotées en même temps ?”A travers cet article, en nous basant sur un cas d’usage assez simple, nous allons aborder cette thématique et y apporter quelques éléments de réponse. L'apprentissage supervisé et l’apprentissage non supervisé Les algorithmes d’apprentissage automatique ont généralement besoin de beaucoup de données pour être efficaces, ce n’est pas…

Lire la suite