Deep Learning

Deep Learning

Visualisation et compréhension des réseaux de neurones convolutionnels

Les réseaux de neurones convolutionnels permettent d’effectuer diverses tâches de traitement d’images, comme de la reconnaissance d’images ou la détection d’objets. (Cf article sur le fonctionnement des réseaux de neurones ici) Dans la suite de cet article, nous nous pencherons sur le cas réseaux de neurones convolutionnels pour la classification d’images afin de garder une trame simplifiée et cohérente. Lors de l’entraînement d’un réseau de neurones, on juge la qualité des résultats à l’aide de certaines métriques. Des images sont fournies en entrée et une…

Lire la suite
Deep Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 1/2

Afin d’explorer de nouvelles possibilités concernant la conduite autonome, de nombreuses compétitions de mini-voitures autonomes existent telles que la compétition de l’Iron Car ou encore la compétition Donkey ® Car  aux États-Unis. Lors de ces compétitions, des mini voitures (type voitures radiocommandées) doivent parcourir quelques tours d’un circuit faisant approximativement la taille d’un hangar. Dans cet article, nous allons étudier l’utilisation d’une solution d’apprentissage par renforcement (RL - Reinforcement Learning - pour les intimes) pour la conduite autonome selon le contexte schématisé en figure 1.

Lire la suite
Deep Learning

SPARK + AI Summit Europe 2019

Introduction   Les 16 & 17 Octobre 2019, nous sommes rendus à Amsterdam afin d’assister à la conférence annuelle organisée par Databricks, le Spark+AI Summit, événement devenu incontournable dans le monde du Big data et de l’IA. Cette année, ce sont plus de 2300 personnes qui ont fait le déplacement pour assister à de nombreuses présentations réparties sur 11 tracks en parallèle. Autant dire que les sujets étaient très denses et nous allons tenter de vous partager l’essentiel de ce qui a retenu notre attention.…

Lire la suite
Deep Learning

Les réseaux de neurones récurrents : des RNN simples aux LSTM

Les réseaux de neurones constituent aujourd'hui l'état de l'art pour diverses tâches d'apprentissage automatique. Ils sont très largement utilisés par exemple dans les domaines de la vision par ordinateur (classification d'images, détection d'objets, segmentation…) et du traitement automatique du langage (traduction automatique, reconnaissance vocale, modèles de langage…). Dans un précédent article, nous avons utilisé une classe particulière de réseaux de neurones, les RNN : Recurrent Neural Networks. Cette famille de modèles, particulièrement adaptée aux données séquentielles, nous a permis de générer automatiquement, caractère par caractère,…

Lire la suite