Data Science

Data Science

Introduction aux algorithmes de recommandation : l’exemple des articles du blog Octo

Notre objectif est d’effectuer de la recommandation d’articles pour le Blog Octo et sa nouvelle application mobile. Nous allons donc dans un premier temps étudier les contraintes de notre problème. En dans un seconds temps, explorer ce qui se fait en matière d’algorithmes de recommandations afin de l’appliquer à notre usecase. Introduction Le blog Octo est en train de se munir d’une application mobile. Pour cette application Android, on va essayer de “comprendre l’utilisateur” et déterminer quelle(s) page(s) il est le plus susceptible de consulter.…

Lire la suite
Data Science

Algorithmes Évolutionnistes : Applications à des problèmes de données – 1

Initialement créés pour résoudre des problèmes d’optimisation dans des espaces complexes à forte dimension, les algorithmes évolutionnistes ont aujourd’hui un large champ d’applications comme solveurs. En particulier, le machine learning se base explicitement sur des processus d’apprentissage qui s’apparentent à des problèmes d'optimisation complexe (on cherche à optimiser les performances d’une fonction d’estimation en se basant sur une quantité limitée d’informations : les données dont on dispose). Ainsi, plusieurs cas applicatifs concrets d'algorithmes évolutionnistes dans les domaines de l’IA ont été développés pour améliorer les…

Lire la suite
Data Science

L’IA embarquée : entraîner, déployer et utiliser du Deep Learning sur un Raspberry (Partie 3)

Dans cette série d’article, on se propose d’étudier le cas d’usage de reconnaissance de dessins grâce à un raspberry. L’idée est d’utiliser la caméra d’un raspberry pour capturer une image représentant un dessin, et déterminer grâce à un réseau de neurones s’il s’agit d’une voiture ou non. Dans un premier article, on a entraîné un réseau de neurones performant à l’aide du framework Keras. Le second article porte sur le déploiement maîtrisé du modèle dans un environnement de production. Il ne nous reste plus qu’à…

Lire la suite
Data Science

L’IA embarquée : entraîner, déployer et utiliser du Deep Learning sur un Raspberry (Partie 2)

Dans cette série d’articles, on se propose d’étudier le cas d’usage de reconnaissance de dessins grâce à un Raspberry. L’idée est d’utiliser la caméra d’un Raspberry pour capturer une image représentant un dessin, et déterminer grâce à un réseau de neurones s’il s’agit d’une voiture ou non. Dans un premier article, on a entraîné un réseau de neurones performant à l’aide du framework Keras. Le résultat est un objet Python - le modèle - sauvegardé en format .h5. Comment faire pour l’utiliser sur un Raspberry…

Lire la suite
Data Science

L’IA embarquée : entraîner, déployer et utiliser du Deep Learning sur un Raspberry (Partie 1)

Pour la deuxième année consécutive, OCTO Technology prend part à la course Iron Car avec son équipage Octonomous. Pour rappel, le but de la compétition est de réaliser trois tours de circuit avec une voiture de taille réduite le plus rapidement possible. Bien entendu, la voiture n’est pas radiocommandée ; une des règles de la compétition est précisément d’utiliser un réseau de neurones pour le pilotage de la voiture ! Le matériel autorisé, outre la voiture, est composé d’un Raspberry Pi et de sa caméra…

Lire la suite
Data Science

L’apprentissage par renforcement démystifié

L’apprentissage par renforcement (ou “reinforcement learning”) s’est imposé ces dernières années comme une thématique incontournable de la recherche en intelligence artificielle. Tout comme d’autres méthodes d’apprentissage automatique, les techniques de renforcement utilisées ne datent pas d’hier (l’algorithme de Q-learning a été introduit en 1989), mais se sont révélées aux yeux du monde grâce à des avancées emblématiques. C’est notamment grâce à un seul et unique programme de Q-learning, combiné avec de l’apprentissage profond (“deep learning”), que les ingénieurs de DeepMind ont atteint en 2014 des…

Lire la suite
Data Science

Prise en main de MLflow, un outil pour tracer les résultats de vos expériences

Dans la tendance de l’industrialisation de la data science, une douleur importante est de garder la trace des expérimentations menées. C’est-à-dire tracer les résultats obtenus avec une version du jeu de données, un type de modèle et un set de méta-paramètres. Le graal est peut-être de faire comme Facebook : des modèles de modèles. Mais avant d’atteindre cela, encore faut-il collecter les données et s’en servir pour suivre les résultats. Pour répondre à cet enjeu de collecte de données en lien avec les expérimentations, il…

Lire la suite
Data Science

Machine Learning – 7 astuces pour scaler Python sur de grands datasets

Python est le langage privilégié chez les Data Scientists, notamment grâce à toutes ses librairies open-source et sa facilité de mise en production du code. Pourtant, à mesure que la volumétrie des données augmente, le passage à des paradigmes différents comme ceux de Spark et Hadoop est recommandé car plus scalable. Cependant, cela nécessite souvent de mettre en place une infrastructure et d’adapter son code. Voici quelques astuces qui permettent d’étendre l’utilité de Python pour des datasets de plusieurs gigaoctets dans un contexte mono-machine. 1…

Lire la suite
Data Science

On entend beaucoup de choses sur l’architecture de SI…

...mais on a rarement des réponses claires aux questions qu’on se pose ! La Duck Conf est faite pour ça ; pour partager et explorer des sujets pratiques, techniques, incontournables, qui nous font aimer l’archi. A commencer par les grands classiques : que faire du legacy ? Ou plus récemment, comment je me mets en conformité avec le RGPD ?... En s’attaquant à des sujets techniques pointus, comme celui des transactions distribuées en environnement microservices. Sans oublier de se faire plaisir avec des domaines plus…

Lire la suite
Data Science

Compte-Rendu de Matinale : Levez la malédiction du passage de l’IA en production

Jeudi 29 novembre, l’équipe Big Data Analytics, en charge des sujets d'Intelligence Artificielle à OCTO Technology, a présenté au cours d'une Matinale sa vision de l'industrialisation de l'IA (voir la vidéo de la Matinale, obtenir les slides). L’IA, actuellement portée par la hype, est un buzzword qui veut souvent dire tout et n’importe quoi. Data scientists, métiers, marketing, utilisateurs, etc. chacun y va de sa définition. Nos clients se retrouvent avec des POCs d’applications d’IA sans fin qui peinent à être industrialisés et à être intégrés dans…

Lire la suite