Data Science

Data Science

Algorithmes Évolutionnistes : Applications à des problèmes de données – 3

Le premier article était consacré à la structure et au fonctionnement des algorithmes évolutionnistes et le second portait sur leur performance. Nous allons ici nous intéresser à un cas d'application concret d'algorithmes évolutionnistes sur un problème de données complexes. Le cas d'application présenté est l'utilisation d'un algorithme évolutionniste comme une alternative à de l'apprentissage par renforcement pour entraîner un véhicule à se déplacer dans un environnement simulant un circuit. Le problème s'apparente ici à celui de la conduite autonome. Un peu de contexte sur l'apprentissage…

Lire la suite
Data Science

Comment l’IA peut-elle changer le recrutement ? (partie 2)

Dans la première partie de l’article, nous avons vu quelles étaient les solutions logicielles permettant aux entreprises de trier les candidatures. Cette démarche, qui a de l’intérêt principalement lorsque l’entreprise reçoit énormément de candidatures, repose sur une méthode simple mais très limitée. Nous avons vu que l’IA a le potentiel pour apporter des solutions aux limites évoquées mais présente aussi des écueils à éviter, notamment les biais. Dans cette deuxième partie, nous allons présenter une technique de NLP qui pourrait permettre de pallier les défauts…

Lire la suite
Data Science

Comment travailler efficacement par petits incréments dans un delivery de Machine Learning ?

Cet article fait partie de la série Accélérer le Delivery de projets de Machine Learning, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin.  Certains termes techniques sont numérotés. Vous trouverez leur définition à la fin…

Lire la suite
Data Science

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 2/2

Dans un article précédent, nous avons expliqué notre approche pour appliquer l’apprentissage par renforcement (RL - Reinforcement Learning) à la conduite autonome dans un simulateur. Nous avons explicité les concepts du RL dans ce cas d’usage et décrit l’algorithme de DDQN (Double Deep-Q Learning) que nous avons choisi pour ce problème. Si vous n’avez pas lu l’article précédent, retenez simplement que : On entraîne un agent dans un simulateur de conduite (ou environnement). Cet agent évolue dans la simulation et y entreprend des actions :…

Lire la suite
Data Science

La gestion de versions en Delivery de Machine Learning

Cet article fait partie de la suite “Accélérer le Delivery de projets de Machine Learning” traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Lorsque l’on a des problèmes en production, sans machine à remonter dans le temps, notre seul espoir est d’avoir d’anciennes versions Introduction L’une des quatre métriques de performance que propose Accelerate est le temps moyen de correction d’un incident en production (Mean Time to Repair), il s’agit d’une métrique dont le suivi permet d’avoir une idée sur…

Lire la suite
Data Science

Comment l’IA peut-elle changer le recrutement ? (partie 1)

Savez-vous qu’il faut évaluer en moyenne 100 candidatures pour réaliser une embauche ? C’est le résultat d’une étude menée par Lever, une société de San Francisco, basée sur les données récoltées de ses clients installés dans 40 pays. Pour gérer toutes ces candidatures, les recruteurs utilisent des outils appelés Applicant Tracking System (ATS). Ils permettent d'organiser et centraliser les candidatures provenant de différents canaux (sourcing de candidats, cooptations, jobboards, site carrière, etc.) et de suivre l'avancement du processus de sélection. Mais les recruteurs ont toujours…

Lire la suite
Data Science

Le Feature Store, nouvel outil pour les projets data science

I) Quelles sont leurs origines, à quoi servent-ils et à qui sont-ils destinés ?  Une feature est une mesure d’une propriété d’une observation, plus prosaïquement, elle peut être l’âge d’un individu ou un mot extrait d’un texte. Les features, c’est l’or raffiné par les data scientists pour produire les modèles de machine learning. Fréquemment, les problèmes qui surviennent dans un projet data science sont liés à ces features : à leur qualité ou à leur disponibilité notamment. Un feature store est un point centralisé où…

Lire la suite
Data Science

Les tests automatisés en Delivery de Machine Learning

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning” traitant de l’application du framework Accelerate dans un contexte incluant du Machine Learning. Un Data Scientist heureux d’avoir des tests automatisés qui ont détecté un problème avant qu’il ne devienne critique Introduction Parmi les leviers garantissant la qualité d’un produit logiciel, on trouve les tests automatisés. Ces tests, lorsqu’ils sont rédigés de manière effective, doivent permettre de détecter des problèmes dans la base de code et empêcher le déploiement d’un…

Lire la suite
Data Science

CovidTracker : la data au service de tous – Compte-rendu du talk de Guillaume Rozier à La Duck Conf 2021

Une fois de plus cette année, la Duck Conf vous livre un tour d’horizon des pratiques d’architecture de SI, fondé sur des expériences terrains et nos convictions. Pour cette keynote de clôture, nous avons le plaisir d’accueillir Guillaume Rozier, fondateur de CovidTracker. Vous découvrirez dans ce compte-rendu les coulisses de ce service, ses facteurs-clés de succès et les orientations prévues dans un futur proche. Les diapositives de la présentation de Guillaume sont accessibles via ce lien. 1. What : d’une initiative individuelle à un projet…

Lire la suite
Data Science

Amener son projet de machine learning jusqu’en production avec Wheel et Docker

Cet article propose d'explorer setuptools, Wheel et Docker afin de packager une application de Machine Learning pour détecter des muffins 🍪 ou des chihuhuas 🐶 dans une image, avec code a l'appui. Si packager du code de Machine Learning en Python est pour vous synonyme de demander à vos utilisateurs de cloner votre repository git sur leur machine, cet article devrait vous intéresser.

Lire la suite