Data Science

Data Science

Marier machine learning et physique : le point de vue d’un data scientist

Cet article s'adresse à mes collègues data scientists. Il s'appuie en grande partie sur un article de 2017 intitulé “Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data” [TGDS]. [TGDS] discute des apports de la data science auprès des chercheurs scientifiques. Notre propos, dans cet article, est de résumer [TGDS] à la lumière de nos pratiques usuelles de data science, et de faire l'exercice inverse : comment ces pratiques peuvent-elles s'inscrire dans l'effort scientifique ? Comment présenter notre démarche à des scientifiques désireux…

Lire la suite
Data Science

Interprétabilité des systèmes de data science

En mission, nous rencontrons de plus en plus des besoins d'interprétabilité. Ce changement est dû à une évolution de la maturité des organisations sur la data science. En caractérisant un peu le trait, hier les projets de data science étaient surtout marketing (Ex : prédiction d'appétence ou d’attrition à des fins de ciblage). Ils étaient faits à partir de données versées dans un datalake avec des processus plus ou moins maîtrisés. Ces données étaient manipulées et transformées de manière plus ou moins rigoureuse. L’objectif principal…

Lire la suite
Data Science

SPARK + AI Summit Europe 2019

Introduction   Les 16 & 17 Octobre 2019, nous sommes rendus à Amsterdam afin d’assister à la conférence annuelle organisée par Databricks, le Spark+AI Summit, événement devenu incontournable dans le monde du Big data et de l’IA. Cette année, ce sont plus de 2300 personnes qui ont fait le déplacement pour assister à de nombreuses présentations réparties sur 11 tracks en parallèle. Autant dire que les sujets étaient très denses et nous allons tenter de vous partager l’essentiel de ce qui a retenu notre attention.…

Lire la suite
Data Science

Créer une web-app interactive en 10min avec Streamlit

Dans un projet de Machine Learning, il y a souvent besoin de visualiser les données sous forme de graphes, que ce soit lors d’une phase exploratoire ou pour montrer les résultats d’une modélisation. Force est de constater qu’intégrer ces graphes à une web-app n’est pas forcément aisé, puisque les outils existants nécessitent pour  la plupart quelques connaissances front-end, Dash par exemple. Et si nous pouvions faire tout ceci en Python, en 10 minutes ? C’est ce que nous allons voir avec Streamlit, une nouvelle librairie…

Lire la suite
Data Science

La confiance des utilisateurs dans les systèmes impliquant de l’Intelligence Artificielle

Avec le développement de l’IA, de nombreuses questions sociétales ont émergé : éthique, biais, et dilemmes de l’IA sont des notions fréquemment abordées. Et les réponses à ces questions seront des facteurs essentiels, entend-on souvent, de notre confiance dans les algorithmes de machine-learning qui gouverneront bientôt le monde :-) C’est sans doute vrai, mais la question de la confiance dans les systèmes d'IA ne doit pas être limitée à ces problématiques éthiques. Outre le fait qu’elles dépassent la simple notion de confiance, les réponses à de…

Lire la suite
Data Science

Les réseaux de neurones récurrents : des RNN simples aux LSTM

Les réseaux de neurones constituent aujourd'hui l'état de l'art pour diverses tâches d'apprentissage automatique. Ils sont très largement utilisés par exemple dans les domaines de la vision par ordinateur (classification d'images, détection d'objets, segmentation…) et du traitement automatique du langage (traduction automatique, reconnaissance vocale, modèles de langage…). Dans un précédent article, nous avons utilisé une classe particulière de réseaux de neurones, les RNN : Recurrent Neural Networks. Cette famille de modèles, particulièrement adaptée aux données séquentielles, nous a permis de générer automatiquement, caractère par caractère,…

Lire la suite
Data Science

Algorithmes Évolutionnistes : Applications à des problèmes de données – 2

Partie 2 : Performance des algorithmes évolutionnistes Nous avons pu voir dans la première partie les différents éléments constitutifs d'un algorithme évolutionniste et quelques cas d’utilisations classiques des algorithmes évolutionnistes avec des applications à des problèmes de données.   Pour autant, ces algorithmes sont-ils compétitifs face aux autres types d’algorithmes d’optimisation ? Sur quels types de problèmes sont-ils les plus efficaces ? Cette partie vise à analyser les performances des algorithmes évolutionnistes ainsi que les facteurs qui affectent cette performance, le tout au travers d’un…

Lire la suite
Data Science

« Ethical by Design », le véritable enjeu de l’IA

Compte-rendu de la matinale du Jeudi 3 Octobre 2019 Jeudi 3 Octobre 2019, l’équipe RespAI (Responsible Artificial Intelligence) d’OCTO Technology, qui s’intéresse à l’usage responsable des traitements algorithmiques des données, a accueilli des intervenants aux profils variés afin de discuter d’un nouvel enjeu de l’IA : “Ethical by Design”.

Lire la suite
Data Science

Ouvrir la boîte noire et comprendre les décisions des algorithmes

L’usage des algorithmes de traitement de données – de la simple requête SQL aux puissants algorithmes de recommandation et de personnalisation des géants de la Tech – s’est popularisé ces dernières années, notamment pour des utilisateurs traditionnellement hors du domaine IT. Cet usage se retrouve dans tous les secteurs (industrie, éducation, santé, sécurité, etc.) et tend à déléguer de plus en plus de décisions à des systèmes automatisés. Cette appropriation par le plus grand nombre rend les naufrages encore plus probables, et l’exemple de Cambridge…

Lire la suite
Data Science

Mise en application de DVC sur un projet de Machine Learning

Introduction DVC (Data Version Control) est un package Python qui permet de gérer plus facilement ses projets de Data science. Cet outil est une extension de Git pour le Machine Learning, comme l’énonce son principal contributeur Dmitry Petrov dans cette présentation. DVC est à la fois comparable et complémentaire à Git. Il va s’occuper de synchroniser vos données et votre code. Il est donc particulièrement intéressant dans le cadre d’un projet de Machine Learning où le modèle et les données évoluent au fil du développement.…

Lire la suite