Data Science

Data Science

Optimisation du problème du voyageur de commerce par du Machine Learning :

Longtemps considéré comme la discipline reine alliant mathématiques appliquées et informatique dans l'industrie, l'optimisation combinatoire s'éclipse aujourd'hui dans l'ombre de son cousin le Machine Learning.  Au lieu de considérer les deux sujets indépendamment, nous vous proposons par le biais de cet article, un exemple de contribution du Machine Learning dans la résolution de l’un des problèmes les plus utilisés  de l’optimisation combinatoire.  Les problèmes d’optimisation combinatoire constituent une classe de problèmes qui cherche à trouver la solution optimale parmi un ensemble fini de choix. Or,…

Lire la suite
Data Science

Stratégies et patterns pour déployer automatiquement un modèle de machine learning

Automatiser un déploiement c’est pouvoir rendre accessible une nouvelle version de son logiciel en un clic. En ce qui concerne le déploiement d'un modèle de machine learning, il s’agit d’automatiser deux choses : la construction de l’artéfact modèle, communément appelé entraînement ; le déploiement du service d’inférence.  Service d’inférencePipeline de construction de l’artefact modèleRôleSert les prédictionsProduit un modèle à partir de données et de codeEnjeuPouvoir déployer une nouvelle version du modèle utilisable par le logiciel à la demandePouvoir lancer un entraînement à la demande Nous…

Lire la suite
Data Science

La causalité : comprendre les données autrement

Article co-écrit par Ilann Mahou et Amric Trudel On nous demande régulièrement chez Octo de développer des outils pour guider la prise de décisions. Par exemple, un client peut chercher à maximiser ses profits, alors qu’un autre souhaite minimiser ses pertes. On cherche souvent à développer des modèles de Machine Learning pour ce type de cas d’usage, mais il faut se rappeler que, bien que ces derniers puissent être excellents pour faire des prédictions, ils ne sont pas conçus pour nous dire comment intervenir dans…

Lire la suite
Data Science

[MLOps] Monitoring & proactive notification d’une application de Machine Learning

En tant que développeur d’application embarquant une brique de Machine Learning notre  principal objectif est d’avoir une application utilisée qui fonctionne sans bogue.  Une fois en production et utilisée, il faut anticiper ou identifier les bogues dans notre application et les résoudre au plus vite, afin de maintenir le service rendu et en tirer réellement profit. Nous détaillerons plus précisément la notion de bogue en ML, mais pour commencer nous pouvons dire qu'un bogue en ML est soit une absence de prédiction, soit une erreur…

Lire la suite
Data Science

La génération d’images avec DALL-E 2

Introduction L’image est depuis maintenant quelques années, l’un si ce n’est le terrain de jeu favori en Deep Learning. Les réseaux de neurones profonds sont devenus si performants dans la reconnaissance d’objets qu’il fallait un nouveau challenge dans le domaine. Depuis quelques mois, nous voyons apparaître des modèles capables de générer des images cohérentes à partir de texte. Cela peut paraître anodin mais demande pourtant de comprendre la cohérence entre les pixels à différentes échelles, une tâche extrêmement compliquée. Après s'être penché sur les CNN,…

Lire la suite
Data Science

Machine Learning delivery : intégrer au plus tôt la sécurité

Cet article fait partie de la série “Accélérer le Delivery de projets de Machine Learning”, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin. Considérer la sécurité en Machine Learning Élément clef en logiciel, la sécurité…

Lire la suite
Data Science

Le change approval process d’un logiciel avec du ML

Cet article fait partie de la série Accélérer le Delivery de projets de Machine Learning, traitant de l’application d’Accelerate dans un contexte incluant du Machine Learning. Si vous n’êtes pas familier avec Accelerate, ou si vous souhaitez avoir plus de détails sur le contexte de cet article, nous vous invitons à commencer par lire l’article introduisant cette série. Vous y trouverez également le lien vers le reste des articles pour aller plus loin. Change Approval Process : de quoi s’agit-il ? Commençons par une définition…

Lire la suite
Data Science

Matrice Cynefin x Machine Learning : Quand mettre en production ?

Mettre rapide un modèle de Machine Learning en production pour minimiser le risque des systèmes complexes Certains affirment qu’il faut attendre d’avoir finalisé son modèle de Machine Learning (ML) avant d’aller en production, d'autres qu’il faut aller au plus tôt en production pour avoir du feedback. Formé à l'école Agile, DevOps, Lean, Accelerate, je fais clairement plus partie de la deuxième catégorie ; cependant je dois reconnaître que certains problèmes méritent d’être résolus complètement avant d’aller en production. Ayant découvert récemment la matrice Cynefin, dans…

Lire la suite
Data Science

Et si les métriques de monitoring de ML devenaient fonctionnalités ?

Les équipes développant des applications de Data Science investissent beaucoup d’énergie pour identifier et implémenter des métriques de monitoring pertinentes. Nous pensons qu’il est possible de capitaliser sur ce travail en proposant des fonctionnalités supplémentaires à nos utilisateurs afin de renforcer l’impact de nos applications. Le monitoring s’appuie notamment sur le calcul de métriques à des fins de supervisions; c'est-à-dire mesurer l’état de service et détecter des problèmes. Les métriques calculées peuvent être plus ou moins haut niveau, plus ou moins éloignées du matériel: Bas…

Lire la suite