Publications de Rym Laabiyad

Data Science

Introduction à l’interprétation de modèles de Machine Learning

 Introduction L’une des premières choses que l’on apprend en Machine Learning est qu’il faut souvent faire un compromis entre la performance d’un modèle et son interprétabilité. Les modèles transparents (interprétables by design, ou directement interprétables par un humain, comme la régression linéaire ou les arbres de décision) sont en général moins performants que les modèles boîte noire, c.à.d qui ne sont pas directement interprétables par l’humain, comme XGBoost ou les réseaux de neurones artificiels. Cet article propose une introduction à des méthodes d’interprétation de modèles…

Lire la suite