Publications de Paul DALOUS

Deep Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 2/2

Dans un article précédent, nous avons expliqué notre approche pour appliquer l’apprentissage par renforcement (RL - Reinforcement Learning) à la conduite autonome dans un simulateur. Nous avons explicité les concepts du RL dans ce cas d’usage et décrit l’algorithme de DDQN (Double Deep-Q Learning) que nous avons choisi pour ce problème. Si vous n’avez pas lu l’article précédent, retenez simplement que : On entraîne un agent dans un simulateur de conduite (ou environnement). Cet agent évolue dans la simulation et y entreprend des actions :…

Lire la suite
Deep Learning

Apprentissage par renforcement appliqué à la conduite autonome dans un simulateur 1/2

Afin d’explorer de nouvelles possibilités concernant la conduite autonome, de nombreuses compétitions de mini-voitures autonomes existent telles que la compétition de l’Iron Car ou encore la compétition Donkey ® Car  aux États-Unis. Lors de ces compétitions, des mini voitures (type voitures radiocommandées) doivent parcourir quelques tours d’un circuit faisant approximativement la taille d’un hangar. Dans cet article, nous allons étudier l’utilisation d’une solution d’apprentissage par renforcement (RL - Reinforcement Learning - pour les intimes) pour la conduite autonome selon le contexte schématisé en figure 1.

Lire la suite