Publications de Jérémy SURGET

Archi & techno

Quelle stratégie de découpage adopter pour un produit de ML maintenable dans le temps ? – Compte-rendu du talk de Pierre Baonla Bassom à La Duck Conf 2022

Avez vous déjà entendu l’histoire de Netflix, qui a dépensé énormément d’argent dans un super système de recommandation, mais qui n’a jamais été déployé car trop complexe ? Cette histoire n’est pas un cas isolé et se retrouve beaucoup plus souvent que vous ne le pensez. Entre les produits de ML qui ne sont jamais envoyés en production et ceux qui mettent 6 mois à être déployés, il y a une vraie perte de temps et d’argent lorsque les produits de ML ne sont pas…

Lire la suite
Archi & techno

Modèle embarqué VS model as a service : quelle stratégie choisir ?

    Introduction Vous avez développé un super modèle de Machine Learning, les performances sont au top et il résout un vrai problème. Malheureusement, personne n’en aura jamais connaissance si vous ne le déployez pas en production. Votre modèle n’aura été qu’un POC parmi tant d’autres et ne créera jamais de valeur pour l’entreprise et pour vos utilisateurs. Il y a quelques années, alors que les modèles n’étaient que très rarement déployés en production, la question de l’exposition était souvent anecdotique. Avec la croissance grandissante…

Lire la suite